On the Relation Between Two Minor-Monotone Graph Parameters

نویسنده

  • Rudi Pendavingh
چکیده

We prove that for each graph (G) (G) + 2, where and are minor-monotone graph invariants introduced by Colin de Verdi ere 3] and van der Holst, Laurent and Schrijver 5]. It is also shown that a graph G exists with (G) < (G). The graphs G with maximal planar complement and (G) = jV (G)j ? 4, characterised by Kotlov, Lovv asz and Vempala, are shown to be forbidden minors for fH j (H) < jV (G)j ? 4g.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on pre-monotone operators

‎In this paper‎, ‎some properties of pre-monotone operators are proved‎. ‎It is shown that in a reflexive Banach space‎, ‎a full domain multivalued $sigma$-monotone operator with sequentially norm$times$weak$^*$ closed graph is norm$times$weak$^*$ upper semicontinuous‎. ‎The notion of $sigma$-convexity is introduced and the‎ ‎relations between the $sigma$-monotonicity and $sigma$-convexity is i...

متن کامل

Interval Routing and Minor-Monotone Graph Parameters

We survey a number of minor-monotone graph parameters and their relationship to the complexity of routing on graphs. In particular we compare the interval routing parameters κslir(G) and κsir(G) with Colin de Verdière’s graph invariant μ(G) and its variants λ(G) and κ(G). We show that for all the known characterizations of θ(G) with θ(G) being μ(G), λ(G) or κ(G), that θ(G) ≤ 2κslir(G) − 1 and θ...

متن کامل

Parameters Related to Tree-Width, Zero Forcing, and Maximum Nullity of a Graph

Tree-width, and variants that restrict the allowable tree decompositions, play an important role in the study of graph algorithms and have application to computer science. The zero forcing number is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by a graph. We establish relationships between these parameters, including several Colin de Verdière type...

متن کامل

Nordhaus-Gaddum Problems for Colin de Verdière Type Parameters, Variants of Tree-width, and Related Parameters

A Nordhaus-Gaddum problem for a graph parameter is to determine a tight lower or upper bound for the sum or product of the parameter evaluated on a graph and on its complement. This article surveys Nordhaus-Gaddum results for the Colin de Verdière type parameters μ,ν , and ξ ; tree-width and its variants largeur d’arborescence, path-width, and proper path-width; and minor monotone ceilings of v...

متن کامل

On relation between the Kirchhoff index and number of spanning trees of graph

Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Combinatorica

دوره 18  شماره 

صفحات  -

تاریخ انتشار 1998